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Abstract

Background: Although the message of ‘‘global climate change’’ is catalyzing international action, it is local and regional
changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy
makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and
interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based
tool called Climate Wizard (http://ClimateWizard.org) that provides non-climate specialists with simple analyses and
innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas
throughout the world.

Methodology/Principal Findings: To demonstrate the Climate Wizard, we explored historic trends and future departures
(anomalies) in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the
greatest temperature increases during 1951–2002 occurred in northern hemisphere countries (especially during January–
April), but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately
50uN during February-March to 10uN during August-September. Precipitation decreases occurred most commonly in
countries between 0–20uN, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble
analysis based on projections from 16 General Circulation Models (GCMs) for 2070–2099 identified the median projected
change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation
change.

Conclusions/Significance: The results of these analyses are consistent with those reported by the Intergovernmental Panel
on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally-
and temporally-specific analyses of climate change. Moreover, Climate Wizard is not a static product, but rather a data
analysis framework designed to be used for climate change impact and adaption planning, which can be expanded to
include other information, such as downscaled future projections of hydrology, soil moisture, wildfire, vegetation, marine
conditions, disease, and agricultural productivity.
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Introduction

Climate-change impacts to ecosystems have been well

documented [1]. Although there is growing evidence of climate

change, natural resource managers have found it difficult to

develop management and planning responses to climate change.

One reason for this slow response is that there are relatively few

tools for translating cutting-edge climate science and climate-

model simulations into a form that a manager can work with at a

local or regional scale [2]. Although large amounts of data exist

regarding how climate has and is projected to change, these data

are stored in databases that can be difficult to access.

Furthermore, although analytical techniques are available for

quantifying the potential effects of these changes, many require

significant computing resources and analytical expertise. Scien-

tists, managers, and policy makers (i.e. practitioners) need the

ability to assess the potential effects of climate change on specific

ecological systems within specific geographic areas at relevant

spatial scales.

Here we provide an example of how computer-based

technologies can be used to develop tools that make climate-

change analysis more accessible, practical, and useful. These

technologies include geographic information systems (GIS),

statistical analysis platforms (e.g. the R Project), and web-based

mapping services (e.g., ArcGIS Online, KML/GML, and SOAP).

Specifically, we provide a framework for practical climate-change

analysis, and present an internet-based climate data analysis and

mapping tool, which we call Climate Wizard.

PLoS ONE | www.plosone.org 1 December 2009 | Volume 4 | Issue 12 | e8320



Climate Wizard: An Easy-to-Use Tool for Practical Climate
Change Analysis

The Climate Wizard is freely available as an interactive website

that produces climate-change maps, graphs, and tables (http://

ClimateWizard.org). This tool was designed with a range of users

in mind. For less technical users, it provides access to a wide range

of pre-calculated climate-change analyses based on existing data

sets (both past observed and future modeled) that can be explored

in a web mapping interface. For more technical users, it can run

customized statistical analyses that address relevant ecological

questions for specific time periods and within user-specified

geographic areas (http://ClimateWizard.org/custom).

Different scientific, management, and policy questions can require

different types of climate data and analyses. The Climate Wizard uses

two common approaches for representing climate-change data: (1)

comparing climate in a given year or time period to a baseline period

(climatic departures or anomalies); and (2) calculating statistical

climatic trends over a time period of interest using linear trend

analysis (restricted maximum likelihood) that accounts for the time-

series nature of climate data (serial temporal autocorrelation).

Climatic departures are useful for identifying specific years above

or below a threshold value. Such a threshold could represent the

climate of a historical time period (e.g., the average of the past

century, Figure 1a), or the climatic conditions required by a specific

ecological process. For example, the onset of breeding activity of the

common toad (Bufo bufo) in the United Kingdom is linked to the

number of days with mean temperatures above 6uC during the 40

days preceding arrival at the breeding pond [3]. Comparisons to a

historical baseline have the advantage of being easy for general

audiences to understand. Trend analyses, on the other hand, are

useful for assessing continual and incremental change over time and

the statistical significance of the trend (Figure 1b).

The Climate Wizard can analyze both past observed and future

projected climate data. While analyzing observed (historical)

climate data is fairly straight forward, future climate projections

from general circulation models (GCMs) can be more complex to

analyze. First, there is not one GCM projection of future climate,

but rather many projections produced by different GCMs run

under a range of greenhouse gas emissions scenarios [4]. Ensemble

analyses are frequently used to combine the simulations of multiple

GCMs and quantify the range of possibilities for future climates

under different emissions scenarios, and the use of an ensemble

median (or mean) is an effective means to improve the outcome of

climate simulations that is often better than any individual future

climate projection [5]. There are many approaches for doing

ensemble analyses ranging from simple averaging of different

projections to more complex and computationally intensive

probability estimation approaches [6]. Second, GCMs often

simulate climate at relatively coarse spatial resolutions (e.g., 2.5–

3.5 degree grid cells). This spatial resolution is too coarse for

addressing many ecological questions. However, Climate Wizard

can use high resolution climate data sets created using downscaling

techniques that use information from finer resolution data sets of

past observed climate to inform how climate will change at finer

spatial scales (e.g., [7]; see Methods for more details).

To conduct these analyses, the Climate Wizard requires (1)

delineated geographic area(s) over which analyses are to take place;

(2) a specified time period over which to calculate a trend analysis or

two time periods to compare for a departure analysis; (3) a specified

temporal resolution(s), or time domain(s), over which data are to be

summarized (annual, seasonal, or monthly); and (4) a list of climate

variables of interest (e.g., precipitation, temperature). The Climate

Wizard uses ArcGIS [8] SOAP web-services and the R statistical

package [9] to access a time-series database of climate information

stored on a remote computer server, and then uses the server’s

computing power to create outputs in the form of graphs, maps,

tables, and GIS data layers tailored to the specific climate-change

question being asked by the user (see Methods section for more

details). Because this tool stores and analyzes the climate data sets on

remote computer servers, users of the tool do not need to have fast

Figure 1. Global temperature change during 1901–2002. (a) Graph of global mean temperature departures relative to the mean during 1901–
2002. (b) Graph of trend analysis. The trend analysis over the entire time period (black line) increased at a rate of 0.075uC per decade (0.75uC per
century), the trend during 1941–2002 (purple line) increases at a rate of 0.11uC per decade, the trend during 1951–2002 (green line) increases at a rate
of 0. 16uC per decade, the trend during 1961–2002 (orange line) increases at a rate of 0.22uC per decade, and the trend during 1971–2002 (red line)
increases at a rate of 0.31uC per decade. Data for both graphs were calculated from the CRU TS 2.1 data set [10].
doi:10.1371/journal.pone.0008320.g001
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computers or expensive software to analyze the data, but simply need

access to the internet. The outputs can be viewed on the web or

downloaded and directly used in presentations, publications, and

scientific research. All of the climate maps in this article and in the

Supplementary material were created directly from using the Climate

Wizard (except Figure 14, and Figure S5 which are analytic

derivations of Climate Wizard products).

Here, we use the Climate Wizard toolbox to analyze historic

climate data and future climate projections to identify where and

when climate has and is projected to change with the greatest

magnitude and statistical confidence. We demonstrate how the

Climate Wizard can be used to summarize climate-change statistics

both historically and for future climate projections, run across

months, seasons, and annually, for the entire globe, as well as within

latitudinal zones, and individual countries. The ease of use offered by

the Climate Wizard makes it possible for users to carry-out analyses

that may not be appropriate for certain data sets, or for particular

regions or time periods. For this reason, we provide a discussion of

some of the assumptions and limitations of the data sets and analysis

techniques used here (see Discussion section ‘‘Use and misuse of

climate data and analyses’’). Finally, we discuss how the Climate

Wizard is not a static product, but rather a framework that can be

extended to address climate-change related questions in a geographic

context for a wide range of social and environmental issues.

Results

Overview
We present climate trends calculated from the 0.5-degree

resolution CRU TS 2.1 dataset [10] for 1951 to 2002 to identify

those areas that have experienced the greatest rates of temperature

and precipitation change (Figure 2). We chose this time period

because high levels of anthropogenic greenhouse gasses were

emitted during this 52-year period, it spans a long enough period

for major environmental and ecological responses to climate

change to have occurred, and the climate data are more robust for

this period than earlier in the century. We recognize that the CRU

TS 2.1 data were developed using methods that limit their

suitability for trend analyses (see [11], and Discussion section ‘‘Use

and misuse of climate data and analyses’’), and the results should

be interpreted in light of these limits. We also ran the Climate

Wizard for a departure (anomaly) analysis that used future climate

projections downscaled by Maurer et al. [12] to a 0.5-degree

resolution for investigating how much temperature and precipi-

tation is projected to change by 2070–2099 compared to a

historical baseline in 1961–1990. A summary of the analysis results

are presented below, but the complete results for many of these

analyses can be further explored using the Climate Wizard

interactive results web page located at: http://ClimateWizard.org

(Figure S1).

Hotspots for Recent Historical Climate Change Are in
Central Asia, North Africa, and North America

Increases in average annual temperature at a rate of .0.2uC per

decade during 1951–2002 occurred in northwestern North America,

northern and western Africa, eastern Brazil, much of Europe, central

Asia, and parts of southern and eastern Australia, as well as in other,

more localized areas (Figure 2). Central Asia, northeastern Africa,

and some pockets of northwestern North America have experienced

temperature increases .0.4uC per decade—a rate of change that, if

Figure 2. Temperature and precipitation change during 1951–2002. Maps of the magnitude (left) and confidence (right) for annual mean
temperature (top) and precipitation trends during 1951–2002 for each 0.5 degree grid cell in the CRU TS 2.1 data set [10]. For temperature trends,
warmer colors (yellow-green to red) represent increasing temperatures over time, while areas with cooler colors (green-blue to cyan) have been
experiencing decreasing temperatures. For precipitation, cooler colors represent increases and warmer colors represent decreases. Maps of the
confidence trends are least-squares regression p-values, with purple areas representing statistically significant changes (p,0.05), yellow areas
representing marginally significant changes (p,0.10), and grey areas representing changes that are not significant (p.0.10). Areas of white signify no
data, or areas without sufficient climate station coverage to calculate climate change statistics.
doi:10.1371/journal.pone.0008320.g002
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continued for a century, would greatly impact water, ecosystems,

food, coasts and human health [1].

Mapping the p-values values for these regression trends shows

that 58% of the Earth’s terrestrial land area experienced

statistically significant (p,0.05) annual mean temperature trends

for the period 1951–2002, with 29% experiencing highly

statistically significant change (p,0.001, Figure 2). Virtually all

of these significant changes were temperature increases—only

0.2% of the area experienced significant temperature decreases.

Average annual minimum daily temperature increases were

greater than average annual maximum daily temperature

increases. Minimum temperatures increased significantly over

69% of the Earth’s terrestrial area, and decreased significantly

over only 0.2% of the area, while maximum temperatures

increased significantly over only 43% of the area, but decreased

significantly over 1.0% of the area (Figure 3). In addition to a

larger area experiencing increases in minimum temperatures,

those minimum temperature increases were of greater magnitude

than were the increases in maximum temperature. This differen-

tial in the diurnal temperature range (daily low temperature

increasing faster than daily high temperature) has ramifications for

snowpack [13–15], as well as crops that depend on winter chilling

to synchronize pollination [16,17].

Precipitation change between 1951 and 2002 also showed

considerable spatial and temporal variation across the globe.

Although globally, on average, precipitation showed no significant

trend (p = 0.87), statistically significant (p,0.05) precipitation

changes (both increases and decreases) occurred over 17.7% of

the terrestrial area (Figure 2). Precipitation decreases occurred

over 9.4% of this area, predominately in western Africa and the

African Sahel, as well as northern India and eastern Alaska

(Figure 2). Another 8.3% of the globe experienced significant

precipitation increases, mostly located in northern Canada, south-

central United States, Argentina, and north-western Australia.

Depending on their location, timing and magnitude, changes in

precipitation can affect the occurrence of droughts or floods—both

of which can place ecosystems and humans at risk.

Regional Patterns of Change
One of the strengths of the Climate Wizard tool is its ability to

analyze and compare climate change among a set of many areas.

Here we analyzed every country in the world (with the exception

of some island countries) for mean temperature and precipitation

change during 1951–2002. By plotting climate change as a

function of the mean latitude of each country, we demonstrate that

countries located in northern latitudes tended to have a greater

proportion of their area (i.e., grid cells) experiencing significant

annual mean temperature changes greater than 0.4uC/decade

(Figure 4, top). For example, we found that all areas in the

countries of Estonia, Latvia, Kazakhstan, Kyrgyzstan, Tajikistan,

and Uzbekistan experienced temperature increases at a rate

greater than 0.4uC/decade (Figure S2, top).

Precipitation changes also displayed a latitudinal pattern, with

countries in latitudes between 0–20uN experiencing the greatest

area of precipitation decrease at a rate greater than 25%/decade,

while precipitation increases of this rate only occurred in countries

either north or south of this latitudinal region (Figure 4, bottom).

The specific countries with the greatest area experiencing

significant precipitation decreases were predominately in West

Africa, while the increases were predominately in northern Europe

and South America (Figure S2b, bottom).

To further investigate these latitudinal trends, as well as to

demonstrate the flexibility of the Climate Wizard tool, we

analyzed major global latitudinal zones separately. Specifically,

we analyzed changes in the Arctic Circle (above 66.57uN—at least

one day of 24-hour sunlight or darkness), the northern temperate

Figure 3. Minimum and maximum daily temperature change during 1951–2002. Maps of the magnitude (left) and confidence (right) for
averaged minimum daily temperature (top) and maximum daily temperature (bottom) trends during 1951–2002 for each 0.5 degree grid cell. Warmer
colors (yellow-green to red) represent increasing temperatures over time, while areas with cooler colors (green-blue to cyan) have been experiencing
decreasing temperatures. Maps of the confidence trends are least-squares regression p-values, with purple areas representing statistically significant
changes (p,0.05), and yellow areas representing marginally significant changes (p,0.10).
doi:10.1371/journal.pone.0008320.g003
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region (23.44uN to 66.57uN, between the Tropic of Cancer and

the Arctic Circle), the tropical region (23.44uN to 23.44uS), and

the southern temperate region (23.44uS to 66.56uS—between the

Tropic of Capricorn and the Antarctic Circle). The highest rates of

temperature increases have occurred in the northern temperate

region (0.19uC/decade), and the lowest rates in the southern

temperate region (0.11uC/decade) region.

One nuance found in these global climate patterns is that

analyzing the area of significant change separately from the

magnitude of change can provide different insights into how and

where climate changes. For instance, when these latitudinal

regions were analyzed with respect to the percentage of area

having experienced significant change, we found that the southern

temperate region experienced the greatest area of significant mean

temperature change (62%). In contrast, only 36% of the arctic

region experienced significant change, but the magnitude of

overall change was greater in the arctic than in the southern

temperate region (0.14uC/decade compared to 0.11uC/decade).

This difference between the magnitude of change and area of

significant change is a result of greater year-to-year variability in

climate at more northern latitudes lowering the statistical

significance while still maintaining a high overall magnitude of

change. These results demonstrate that it is important to consider

both the magnitude and statistical significance of a trend, because

only relying on one or the other will not always be a good indicator

of the environmental significance of the change being measured

(see [18] and ‘‘Use and Misuse of Climate Data and Analyses’’

section for further discussion).

Seasonal Patterns of Change
Just as climate change varies spatially, it also varies seasonally.

Targeted analyses of climate trends for specific months and

seasons can be especially useful for evaluating the effects of climate

change on specific ecological processes and ecosystem services.

Using Climate Wizard, we analyzed 1951–2002 temperature

trends globally, as well as within countries and latitudinal zones

during each month (Figures 5 & 6) and during each of the four

seasons (Figures S3). Analyzing monthly temperature trends within

latitudinal zones indicates that the area of significant temperature

change (of any magnitude) in the Northern Temperate zone was

largest during January - April, peaking in March (Figure 7). In the

Southern Temperate zone the largest area of significant

temperature change tended to occur during July - October

(Figure 7), which is the late winter and early spring in the southern

hemisphere. However, the Tropical zone experienced greater area

of change, but lower magnitude of change across months, as noted

above (Figure 7).

By analyzing monthly temperature changes within each

country, the results similarly indicate that more northerly countries

(between ,30–60uN) tended to have the greatest area of

significant change .0.4uC/decade during December - May

(winter/spring in the northern hemisphere), while more southern

and equatorial countries tended to experience the greatest

temperature change during June - September (winter/spring in

the southern hemisphere, Figure 8). Moreover, these Climate

Wizard results allowed us to plot and identify specific countries

that had the greatest proportion of their area with temperatures

increasing at a rate of greater than 0.4uC/decade across all

months, which indicated regional patterns such as countries in

Asia tending to experience the greatest change from November -

April, while countries in Europe experienced the greatest change

during January - May (Figure 8). Summarizing this information

revealed that the latitude with the greatest proportion of its area

increasing at a rate .0.4uC/decade followed a sinusoidal pattern

with respect to months ranging from 50uN during February-

March to 10uN during August-September (Figure 8, p,0.001,

nonlinear regression on country area weighted latitudinal means).

Precipitation exhibited some weaker seasonal patterns of

change. For example, the Arctic zone experiencing the greatest

precipitation increases during November–March, and the Trop-

ical zone experienced the greatest precipitation decreases during

July - September (Figures 7, 9 & 10, and Figure S4).

Future Climate Projections
We used Climate Wizard for a departure (anomaly) analysis that

compared modeled historic mean temperature and precipitation

Figure 4. Temperature and precipitation change by country
during 1951–2002. Percent area of countries experiencing annual
mean temperature change .0.2uC/decade (top graph), and annual
total precipitation change .5%/decade (above line) or ,25%/decade
(below line, bottom graph) during 1951–2002 in the CRU TS 2.1 data set
[10] plotted against the mean latitude of the country. Points are colored
by continent and the size of the points is proportional to the land area
of the country. See Figure S2 for a version of this graph with the
countries labeled.
doi:10.1371/journal.pone.0008320.g004
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during 1961–1990 to future projected climate in 2070–2099 using

downscaled projections from sixteen GCMs each run under three

different greenhouse-gas emissions scenarios (48 projections [12]).

The emissions scenarios analyzed include a global curbing of

emissions over the next century (B1 scenario), a mid-21st century

leveling-off of emissions (A1B scenario), and a continual increasing

rate of emissions over the 21st century (A2 scenario; [19]). Because

it is difficult to simultaneously interpret these 48 climate

projections, we provide a summary of model ensemble results

here, but the complete results for each projection can be explored

at http://ClimateWizard.org.

Climate Wizard uses a simple yet informative non-parametric

(quantile-rank) model-ensemble approach that quantifies the range

of future climate projections. This approach overlays all

projections for a specific greenhouse-gas emissions scenario, then

maps out specific quantiles/percentiles across the GCMs at each

grid cell. Here we present the 0 (minimum), 20, 40, 50 (median),

60, 80, and 100th (maximum) percentiles (Figures 11 & 12). While

all models agree that mean temperatures will increase over all

terrestrial land areas in the world (Figure 11), they often do not

agree on the magnitude of that increase. Under the A2 scenario,

specific grid cells in the 20th percentile GCM ensemble ranged

from 0.8–7.3uC, in the median GCM projection ranged from 1.7–

8.4uC, and in the 80th percentile GCM projection ranged from

1.9–9.5uC. Even though there is substantial variation between

GCM projections across the globe, by examining the ensembles of

models it becomes clear that the models tend to project that

temperatures in areas in central North America, Northern Africa,

Central Asia, and Western Australia will increase by the greatest

amount (for a given emission scenario).

Precipitation projections are more complex to interpret than

temperature projections because the GCMs often do not agree on

whether precipitation will increase or decrease at specific locations,

much less agree on the magnitude of that change. However, we can

use the ensemble analysis to find model agreement at different

percentile levels. For example, the median ensemble map can be

used to identify areas where at least half the models project an

increase or decrease in precipitation. In general, the majority of

GCMs projected precipitation decreases in southern Europe, as well

as parts of Africa, South America, southern Australia and southern

North America and projected increases for most of the rest of the

world. However, we can also identify areas where there is greater

agreement between GCMs as to the direction of change. For

example, under the A1B scenario, the Mediterranean region is

projected to decrease in precipitation by approximately 10–30% in

the 80th percentile ensemble map (yellow-reddish colors), which

Figure 5. Monthly temperature changes during 1951–2002. Maps of the trend percent in mean temperature during 1951–2002 in the CRU TS
2.1 data set [10] for each month and broken up by season. These are least-squares regression coefficients calculated and mapped for each 0.5 degree
grid cell. Areas with warmer colors (yellow-green to red) have been experiencing increasing temperatures, while areas with cooler colors (green-blue
to cyan) have been experiencing decreasing temperatures.
doi:10.1371/journal.pone.0008320.g005
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means that 80% of the models (13 out of 16) agree that precipitation

is projected to decrease by at least this amount (Figure 12).

Moreover, some of the areas in this region are projected to decrease

under the ‘‘Maximum’’ ensemble, showing that all GCMs project a

decrease in precipitation these areas. Similarly, most of the arctic

region is projected to increase in precipitation in the 20th percentile

ensemble map (bluish colors), showing that at least 80% of the

GCMs agree that precipitation will increase there; parts of this

region are projected to increase under the ‘‘Minimum’’ ensemble,

showing that all models project an increase in precipitation in these

areas (Figure 12). These two results of model agree for increasing

precipitation and model agreement for decreasing precipitation can

be overlaid to create a map identifying areas where at least 80% of

the models agree precipitation will change in either a positive or

negative direction (Figure S5).

To further analyze these patterns, we used Climate Wizard to

summarize the median ensemble projected mean temperature and

percent precipitation departures within every country. This analysis

shows regional and latitudinal patterns in these projected changes,

such as the highest temperature increases projected at the higher

latitudes in Asia and North America, but not in Europe (Figure 13,

top). However, for precipitation, Europe showed a strong latitudinal

pattern as indicated by the linear pattern of the blue points in

Figure 13 (bottom) indicating projected increasing precipitation in

northern Europe, and decreases in southern Europe.

Finally, we used ensemble analysis to analyze the range of

variability between GCMs by calculating the interquartile range

(the difference between the 25th and 75th quantile maps). This

non-parametric statistic is approximately equivalent to the

parametric standard deviation, and can be used to show areas

where there is greater or less variation between GCMs. Here we

present this analysis for the A2 scenario (although other emissions

scenarios produce similar patterns), which shows that the greatest

between-GCM variation in temperature change projections occur

in northern Asia, western Russia, northern and eastern Europe,

Greenland, central North America, and northern South America

(Figure 14, top). The patterns in GCM variation in percent

precipitation change were quite different from those for mean

temperature, with the greatest variation found in the Sahara,

southern Africa, southern Middle East, and central Asia, among

other areas of the globe (Figure 14, bottom).

Discussion

This paper presents a framework and tool for practical climate-

change analysis. The framework includes data sets (e.g. recent past

Figure 6. Confidence in monthly temperature changes during 1951–2002. Maps of the confidence in the mean temperature trends during
1951–2002 for each month (broken up by season). These are the restricted maximum likelihood p-values calculated and mapped for each 0.5 degree
grid cell. Purple areas represent statistically significant changes (p,0.05), with the confidence in the darkest areas (p,0.001), yellow areas
representing marginally significant changes (p,0.10), and grey areas representing changes that are not significant (p.0.10).
doi:10.1371/journal.pone.0008320.g006
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Figure 7. Monthly changes in temperature and precipitation by latitudinal climatic zones. The proportion of the area in (a) arctic, (c)
northern temperate, (e) tropical, and (g) southern temperate climatic zones that have experienced significant (p,0.05) mean temperature and
precipitation changes during 1951–2002 in the CRU TS 2.1 data set [10] colored by the magnitude of change from Figure 4. Increases are above the
dashed line, decreases are below the dashed line.
doi:10.1371/journal.pone.0008320.g007
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climate and downscaled future GCM climate simulations),

standardized methods (e.g. trend and departure analysis), and

the tool produces useful products (e.g., maps, graphs and tables).

We have demonstrated the analytic power of the Climate Wizard

tool to analyze a set of different places (e.g., countries and

latitudinal bands), both retrospectively and prospectively, and to

summarize and visualize the results in innovative ways through

maps, graphs, and an easy-to-use interactive mapping website

(http://ClimateWizard.org). Our results are in general agreement

with those reported elsewhere using similar data (e.g., [4]).

Although other climate data analysis tools exist (e.g., the IPCC

Data Distribution Centre Visualisation Tools, MAGICC/SCEN-

GEN), the novelty and power of Climate Wizard is that it provides

users with the flexibility to analyze any area of interest during any

time period for which data are available (http://ClimateWizard.

org/custom). Moreover, using internet technologies and web-

based mapping, this tool provides climate-change visualization

capabilities that are state-of-the-art.

Figure 8. Latitudinal patterns of monthly temperature change by country. Percent area of countries experiencing mean temperature
change .0.4uC/decade during 1951–2002 plotted against the mean latitude of the country for each month of the year, January–December (outside
graphs starting from upper left). The center graph shows the mean latitude weighted by area of temperature increase .0.4uC/decade. A statistically
significant (p,0.001) sinusoidal relation between month and the latitude with the greatest area of significant temperature increase .0.4uC/decade
was found using nonlinear regression. Points are colored by continent (see Figure 2 for legend).
doi:10.1371/journal.pone.0008320.g008
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Using Climate Wizard to Identify Climate Impacts
The results presented here as well as other analysis results from

the Climate Wizard can be used to identify past and projected

future impacts due to climate change. The fact that much of the

recent warming has occurred during late winter and early spring

has important ecological implications. For example, the mean egg-

laying date for tree swallows across North America is significantly

negatively correlated with mean May temperatures [20]. It also

appears that springtime warming in the western United States has

led to increased fire activity [21], which can have many impacts,

such as the over two thousand fires in California (USA) during

2008 that burned nearly 485,000 ha (1.2 million acres) and 511

structures, killed 15 people, and required over 25,000 firefighting

personnel (http://www.fire.ca.gov). Because spring temperatures

have increased more than the annual average temperature

increases in both the northern and southern hemispheres, these

ecological processes will be affected even more than would be

expected from only analyzing annual climatic trends.

However, climate-change impacts to ecosystems and society

often occur as a result of interactions between multiple climate

variables. For example, by using the results of the analyses

presented here to simultaneously consider both temperature and

precipitation, we can gain greater insight into how potential future

climatic changes may interact to alter ecological processes, such as

soil moisture dynamics [22], fire occurrence [21], and carbon

sequestration [23]. These results indicate that most of Africa, the

Middle East, Asia, northeast South America, eastern Australia,

and much of western North America became warmer and drier

during 1951–2002. Using the flexibility of the Climate Wizard,

this type of bivariate temperature-precipitation change analysis

can be applied to specific months or seasons to target when during

the year these changes are occurring.

Extending the Climate Wizard Framework
The Climate Wizard framework is intended to be expanded and

built upon, including different data sets, analysis techniques, and

user interface applications. The Climate Wizard can analyze any

gridded time-series of continuous data (i.e., not categorical) that is

stored in the network Common Data Form (netCDF, http://www.

unidata.ucar.edu/software/netcdf/). Because netCDF is the

standardized way to store gridded time-series climate data, it is

fairly straightforward to incorporate additional data sets into the

Climate Wizard framework. These data sets could include

simulations of global vegetation [24], fire [21,25], water runoff

[22], species range shifts [26], agriculture [27], sea level rise [28],

heat stroke [29], disease [30,31], and food security [32,33].

Figure 9. Monthly precipitation changes during 1951–2002. Maps of the trend in percent precipitation change during 1951–2002 for each
month (broken up by season). These are least-squares regression coefficients calculated and mapped for each 0.5 degree grid cell. Areas with warmer
colors (yellow-green to red) have been experiencing decreasing precipitation, while areas with cooler colors (green-blue to cyan) have been
experiencing increasing precipitation.
doi:10.1371/journal.pone.0008320.g009
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Moreover, climate related ‘‘bioclimatic’’ variables could be

calculated (e.g. rates of evapotranspiration, soil moisture avail-

ability, extreme climate statistics, plant hardiness measures, etc.),

which act as metrics or surrogates for more specific climate-change

mediated processes. In addition, climate-change analysis in marine

systems could be incorporated into this framework and these same

analytical techniques could be used to examine and explore how

ocean temperatures, oxygen levels, and acidity have and are

projected to change. At this point, the additional datasets must be

manually added to the Climate Wizard, however, future research

for the tool will focus on developing more streamlined and

automated ways for seamlessly incorporating any gridded time-

series netCDF dataset into the Climate Wizard framework.

Other tools can be created by using outputs from the Climate

Wizard to produce user-friendly web ‘‘mash-up’’ applications that

allow a user to dynamically interact with maps to visualize how

climate changes. For example, programmers at Environmental

Systems Research Institute (ESRI) are beginning to use the results

of Climate Wizard analyses to create animated maps overlaid with

The Nature Conservancy’s (TNC’s) conservation priority areas.

This type of web application, for example, can allow users to zoom

in on a specific conservation priority area, query to see how many

endangered and imperiled species inhabit the area, see an

animation of future projected temperature change at that location,

and query points to see a graph of the projected temperature and

precipitation change over time. Many more web mash-up

applications could be created using technologies such as ESRI

ArcGIS JavaScript API, ESRI ArcExplorer, Google MapsH/

KML, MicrosoftH SilverlightTM, and AdobeH FLEXH.

Use and Misuse of Climate Data and Analyses
The Climate Wizard provides easy access to a variety of climate

data sets and analyses but, like any tool, it can be misused. We

believe it is critical for Climate Wizard users to familiarize

themselves with the strengths and limitations of the available data

and the appropriateness of applying Climate Wizard’s various

analytical techniques to any particular data set. Climate Wizard

website provides users with documentation and basic information

about relevant publications, appropriate citations, and conditions-

of-use restrictions for each data set. Here we provide an overview

of important caveats in light of the analyses and results presented

in this paper, although these caveats can be taken as more

generally applicable to other data and analyses.
Climate data: observed data sets. Observed climate data

have been used to create gridded time-series of climate data for

many geographic areas [10,34–36]. These estimated climate data

Figure 10. Confidence in monthly precipitation changes during 1951–2002. Maps of the confidence in the precipitation trends during
1951–2002 for each month (broken up by season). These are the restricted maximum likelihood p-values calculated and mapped for each 0.5 degree
grid cell. Purple areas represent statistically significant changes (p,0.05), with the confidence in the darkest areas (p,0.001), yellow areas represent
marginally significant changes (p,0.10), and gray areas indicate no significant change (P.0.1).
doi:10.1371/journal.pone.0008320.g010

The Climate Wizard

PLoS ONE | www.plosone.org 11 December 2009 | Volume 4 | Issue 12 | e8320



Figure 11. Projected temperature change ensemble analysis. Quantile ensemble analysis for mean temperature departures in 2070–2099
compared with 1961–1990. The three columns represent the three IPCC CO2 emissions scenarios (B1, A1B, A2), and the rows are the minimum,
median, and maximum, as well as the 20, 40, 60, and 80th percentiles projected by the 16 GCM models.
doi:10.1371/journal.pone.0008320.g011
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Figure 12. Projected precipitation change ensemble analysis. Quantile ensemble analysis for percent precipitation departures in 2070–2099
compared with 1961–1990. The three columns represent the three IPCC CO2 emissions scenarios (B1, A1B, A2), and the rows are the minimum,
median, and maximum, as well as the 20, 40, 60, and 80th percentiles projected by the 16 GCM models.
doi:10.1371/journal.pone.0008320.g012
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are especially useful for practitioners interested in the climate of

specific locations for which historical climate data are not

available. A variety of gridded climate data sets have been

created that range in spatial resolution, geographic extent, time

period, and climate variables (e.g., [10,37,38]), and different data

sets may contain different estimates of climate for the same

location [39].

Moreover, the data sets in the Climate Wizard all have caveats

that may limit their use for certain analyses and applications, and

users are advised to carefully research a dataset before using it. For

example, the CRU TS 2.1 global climate data (1901–2002) we

used in our analyses were originally developed for use as input data

for environmental models (http://www.cru.uea.ac.uk/,timm/

grid/CRU_TS_2_1.html). For some regions and time periods,

climate station data were insufficient for developing accurate

climate estimates, particularly early in the twentieth century. To

create complete spatial coverage, missing data for some grid cells

were given the 1961–1990 mean climate values for certain time

periods. This approach is described in the various publications

accompanying the data (e.g., [10]) and the method produces a

complete time series that can be used for many applications.

However, in the Climate Wizard, we excluded years from the

dataset that did not have at least one station within the threshold

distance of 450 km (precipitation) or 1200 km (temperature) for

each month [40], or did not have data within this threshold

distance for 2/3 of the years being analyzed (see Methods and

Materials section for more information). These data points were

removed to decrease biases in the trend analyses. Other data sets

have been developed for specific regions that use analytical

methods to make gridded temperature and precipitation data sets

temporally consistent (e.g., [38]). Daly [41] describes additional

guidelines to use in determining whether an observed climate

dataset is suitable for a particular application.

Statistical confidence in linear trends. We advise users of

the Climate Wizard to interpret the linear trend climate change

maps in relation to the respective map of statistical confidence

(e.g., Figure 2). We recommend that areas with low statistical

confidence in the rate of change (grey areas on map of statistical

confidence) generally should not be used for making climate-

related decisions. In addition, since historical climate maps are

developed from weather station observations that have been

spatially interpolated to create a seamless map of climate

information, we recommend that single grid cells not be used for

making climate-related decisions, but rather decisions should be

based on many grid cells showing regional patterns of climate

change with statistical confidence.

Climate data: downscaled future projections. It is

important to remember that future climate simulations are

projections of future climate, not accurate predictions of future

climate change for any particular location or specific moment in

time. There are many future climate projections produced by

different GCMs and a number of different types of uncertainty

that accompany these projections [42]. Randall et al. [43] describe

some of the strengths and weaknesses of GCM simulations.

Because the spatial resolution of GCMs (2.5–3.5 degrees) is

often too coarse for many scientific, management, and planning

questions, a variety of methods have been developed for

downscaling climate data to create finer spatial resolution data

sets [44]. The downscaled global climate-change patterns we

present in this paper at a 0.5 degree resolution (,50-km) may still

be too coarse for some applications, but regionally available, finer

scale climate data sets can be incorporated into this framework.

For example, we have recently added to the Climate Wizard

future climate projections produced by 16 GCMs under three

greenhouse-gas emissions scenarios, downscaled to 12-km resolu-

tion for the United States ([45]; see http://ClimateWizard.org).

Increased spatial resolution, however, does not necessarily mean

that data are more accurate. In some cases, the downscaling

methods used to develop coarse-scale climate data are the same as

those used to create fine-scale climate data, and these methods

may ignore important processes that influence climate at regional

and local scales [41].

Other aspects of the methods used to downscale climate data

will influence the appropriate use and interpretation of the

downscaled data. For example, the global 0.5 degree future

projections used in Figures 11 and 12 were created by bias-

Figure 13. Projected temperature and precipitation change by
country. Median ensemble projections (A2 emissions scenario) within
each country in the world departures for temperature (top) and
precipitation (bottom) in 2070–2099 compared with 1961–1990. Note
that the model ensemble was computed at the country scale (not at the
grid cell scale as was done in Figures 5 and 6), such that for each
country only one GCM is used (the median GCM averaged over the
entire country). Points are colored by continent and the size of the
points is proportional to the land area of the country.
doi:10.1371/journal.pone.0008320.g013
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correcting raw, coarse scale GCM output (following [7]) and

spatially interpolating the bias-corrected monthly GCM depar-

tures to a 0.5 degree resolution grid, and then applying these

interpolated data to a 0.5 degree grid of observed climate. This

approach has a number of advantages, including that it

incorporates the effects of topography on climate that are present

in the 0.5 degree observed climate data. Statistical downscaling

approaches assume stationarity in some aspects of the relationship

of coarse-scale predictors to fine-scale climate. If future circulation

patterns change in a way such that the past, observed relationship

between coarse-scale and fine-scale climatic features is significantly

changed, the resulting downscaled data would be less skillful at

representing the future fine-scale climatic changes.

Using ensembles of multiple GCMs. The different GCMs

often disagree in their projection of future climate. For

temperature projections the GCMs generally only disagree in

the magnitude of increase of temperature, however, for

precipitation, the GCMs often disagree in both the direction of

change (increasing vs. decreasing), as well as the magnitude. To

best understand the range of future climate projections, we

recommend using ensembles of multiple models to identify areas

where models agree on climate change and where there is

disagreement between models. Areas with severe disagreement

between models should not be used for making climate-related

decisions. A map showing areas where at least 80% of the GCMs

agree precipitation will either increase or decrease (Figure S5) can

be created easily created from Climate Wizard outputs by

overlaying all positive values from the 20th percentile

precipitation map with all negative values from the 80th

percentile precipitation map (from Figure 12). See ‘‘Future

climate projections’’ in the Results section for examples of using

the Climate Wizard for ensemble analysis.

Spatial and temporal analyses. The Climate Wizard

provides users with different analyses that can be applied to the

available climate data sets. Some of the analyses, however, may

not be appropriate for use with particular data sets, or for

particular regions or time periods within a dataset. For example, as

mentioned above in ‘‘Climate data: Observed data sets’’, certain

Figure 14. Variation in projected temperature and precipitation change between GCMs. Interquartile range of all 16 GCMs (A2 emissions
scenario) at each grid cell for temperature (top) and precipitation (bottom) departures in 2070–2099 compared with 1961–1990. Lighter colors
represent less variability between GCMs.
doi:10.1371/journal.pone.0008320.g014
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data sets may be less appropriate to use for time series analysis

than other temporally consistent data sets [38].

Before performing analyses with the Climate Wizard, there are

a number of issues that a user should consider. The time frame

over which climate data are analyzed should be carefully selected

to avoid drawing incorrect or biased conclusions that do not relate

to the spatial and temporal scales at which the systems and

processes of interest are operating [46]. The choice of the time

period to analyze can influence the results of the analysis. For

example, based on our analysis of the CRU TS 2.1 data, global

mean temperature increased at 0.11uC/decade from 1941 to

2002, 0.16uC/decade from 1951 to 2002, 0.23uC/decade from

1961 to 2002, and 0.33uC/decade from 1971 to 2002 (Figure 1b).

Thus, one’s conclusions about the pace of warming could vary

threefold depending on the time interval sampled. Trends also

depend on location. Because climate varies spatially, the specific

geographic region analyzed can greatly influence the results of a

climate analysis. Some places are getting wetter while others are

becoming drier. Some places have even experienced temperature

decreases in the face of increasing global average temperatures.

Absolute change versus percent change. The Climate

Wizard custom analysis tool can also be used to produce analyses

of absolute precipitation change or percent precipitation change.

Both types of analyses can be useful for looking at temporal and

spatial patterns of climate change, but each require an

understanding of the climate data used in the analysis. For

example, the departure analyses for precipitation in Figure 12 are

presented as the percent change between 2070–2099 and the

1961–1990 baseline period. Two grid cells may have the same

simulated percent decrease in precipitation but a 10% decrease in

precipitation for a grid cell in northern Africa that has relatively

little annual precipitation may represent a much smaller absolute

amount of precipitation change than a 10% decrease for a grid cell

in the Brazilian Amazon region that receives a large amount of

annual precipitation. Likewise, a grid cell in the African Sahel

region, for example, may have the same percent change in

precipitation during January and August, but because it rains

much more during August due to the monsoonal rains, the

absolute precipitation change would be much greater during

August. Thus, the ecological effect of the same simulated future

percent decrease in precipitation may be very different depending

on a number of factors, including the region’s total amount of

annual precipitation, how the simulated precipitation decrease is

distributed throughout the year, and the particular sensitivity to

precipitation changes of the organism or system being studied.

While we only presented percent change in precipitation, the

Climate Wizard custom analysis tool has the ability to calculate

either percent or absolute change in precipitation.

Conclusion
Virtually all fields of study and parts of society—from ecological

science and nature conservation, to global development, multina-

tional corporations, and government bodies—need to know how

climate change has and may impact specific locations of interest.

Our ability to adapt to climate change depends on convenient

tools that make past and projected climate trends available to

planners, managers, and scientists at regional and local scales [2].

It is well known that climate has and will change differently across

the globe, but it has been challenging for practitioners to analyze

climate change within geographic areas relevant to specific

scientific, management, or policy questions being addressed.

Many responses to climate change will require technological

innovations. We believe Climate Wizard begins to meet this

challenge in bridging a gap between the need for and accessibility

of climate-change analyses by allowing a wide range of

practitioners to explore how climate changes. Moreover, this tool

can be adapted to develop web-based tools that are targeted at

educating the general public about how climate change may affect

specific human and natural systems—web-based applications as

easy as Weather.comH to use and interpret. Polls of the American

public consistently reveal that people do not have a sense of how

climate change will affect their lives, and that they perceive climate

change impacts as being more global and non-human, rather than

affecting their families and local communities [47]. For this to

change, information about past and future climate trends must be

more widely and easily accessible to scientists and, moreover, the

climate-change information scientists are producing must be

communicated to planners, managers, and the general public.

We have presented a step toward this end.

Materials and Methods

The analyses in this paper were created using the Climate

Wizard climate-change analysis toolbox, which is an integrated set

of tools that access and analyze time-series climate surfaces (both

past observed and future projected) at a range of spatial scales

using a combination of geographic information systems (GIS),

statistical analysis techniques, and web-based technologies (http://

ClimateWizard.org). The core functions of the Climate Wizard

tool are written in the statistical program R [9] that analyses

climate data stored in netCDF file formats, but the tool uses the

ArcGIS server software to identify the spatial area to analyze and

to provide output data in GIS formats. A web mapping user-

interface was developed to make the tool more accessible and to

assist with both the input and output of data and information. The

various components of the tool—climate data, change analysis,

and user-interface—as well as how it was used to create the

analyses presented in this paper are described below.

Climate Data
The Climate Wizard does not create climate data—it uses

climate data that have been produced by other researchers. The

CRU TS 2.1 monthly climate dataset [10] was used to analyze

recent historic climate change during 1951–2002. This dataset

has a 0.5-degree spatial resolution (grid cells approximately

50 km per side, depending on latitude) and includes the following

climate variables (summarized for each month): daily mean

temperature (monthly average, uC), daily minimum temperature

(monthly average, uC), daily maximum temperature (monthly

average, uC), and precipitation (monthly total, mm). This dataset

was developed based on historic records from thousands of

climate stations around the world. The number of available

climate station records in the CRU TS 2.1 dataset varies through

time and, for certain time periods, some grid cells were not within

the defined threshold distance of a station required to accurately

estimate the temperature and/or precipitation [40] using the

station data provided with the CRU TS 2.1 data [10]. For these

time periods, the climate values in a grid cell were given the grid

cell’s 1961–1990 averages [10]. Therefore we excluded years

from the dataset that did not have at least one station for each

month within the threshold distance of 450 km (precipitation) or

1200 km (temperature) [40]. Then we excluded grid cells that did

not have at least one station within the threshold distance for 2/3

of the years being analyzed. These data points were removed to

decrease biases in the trend analyses. This ensured that any data

that were given the 1961–1990 averages were excluded from the

analysis, as well as ensured there were a sufficient number of

years with data.
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We used projections from 16 GCMs downscaled to a 0.5 degree

resolution as in Maurer et al. [12] for monthly averages of daily

mean temperature and monthly totals of precipitation for 1950–

2099. This downscaling method uses the two-step bias correction

spatial downscaling method, which has been applied extensively at

regional, continental, and global scales [7,45]. We used output

from each GCM under three greenhouse gas emissions scenarios

(A2, A1B, B1; [19]). All projections were generated for the World

Climate Research Programme’s (WCRP’s) Coupled Model

Intercomparison Project phase 3 (CMIP3) multi-model dataset

[48] and used for analyses included in the IPCC Fourth

Assessment Report [4]. While there have been investigations into

weighting the output from some GCMs more heavily (e.g., [49]),

recent findings suggest that including an ensemble of projections is

more important than the weighting scheme [50,51], thus we

assume equal weighting of GCMs.

For both the past and future monthly climate data, we

calculated annual and seasonal climate-change statistics for

December-February (DJF), March-May (MAM), June-August

(JJA), and September-November (SON). Annual and seasonal

temperatures were calculated as the mean (weighted by the

number of days per month and accounting for leap years) and

annual and seasonal precipitation were calculated as the total

amount (i.e., sum of the months). All base climate data were stored

in netCDF file formats (http://www.unidata.ucar.edu/software/

netcdf/) for use in Climate Wizard.

Climate Change Analysis
Trend analysis. To estimate linear climate-change trends

the Climate Wizard uses restricted maximum likelihood (REML)

estimation assuming an AR1 time-series pattern in the residuals.

This is computed using a generalized least squares method of the

nlme contributed package to the R statistical software [9,52].

The REML analysis was run for every grid cell. The data used in

the trend calculations were accessed from the netCDF historical

climate and GCM files using the ncdf contributed package to R

[53]. The linear trends (bo) parameter values and p-values were

calculated annually, seasonally, and for each climate variable, then

mapped using the R contributed package maptree [54]. All

trend rates are expressed as a change per decade (except where

otherwise noted), and precipitation trends were calculated as the

percent change from the average of the entire analysis period

1951–2002.

Departure/anomaly analysis. Departure analyses were

calculated for all future projections. A departure analysis was

calculated by first averaging the climate variable analyzed at each

grid cell for the period from 1961–1990, creating a map of the

baseline ‘‘normal’’ climate value at each grid cell. For each climate

variable analyzed (mean temperature and precipitation), each of

the 48 future climate projections were averaged at each grid cell

for the time period 2070–2099, and the baseline value was

subtracted from this average (at each grid cell). Precipitation

change was calculated as the percent change from the baseline

average, and temperature was calculated as the absolute change

from the baseline average.

An ensemble analysis was conducted for each climate variable

and emissions scenario combination. This was done for each

emissions scenario by overlaying the 16 GCM departure maps and

using the R statistical package command quantile to

calculate the following ensemble quantile values at each grid cell: 0

(mathematical minimum projected change), 0.20, 0.40, 0.50

(median projected change), 0.6, 0.8, 1.0 (maximum projected

change). These quantiles are equivalent to the 0, 20, 40, 50, 60, 80,

and 100th ensemble percentiles, respectively. The results of this

analysis were mapped in R, producing maps of the ensemble

minimum, median, and maximum change, as well as the 20, 40, 60,

and 80th percentiles, for each emissions scenario and climate

variable combination. In addition, the 0.25 and 0.75 quantile

ensembles were calculated and subtracted from each other resulting

in maps of the ensemble inter-quartile range across the 16 GCMs

(A2 scenario only) for both mean temperature and percent

precipitation change. Then, to identify areas in the world where

at least 80% of the GCMs agreed on the direction of precipitation

change, we overlaid all positive values from the 20th percentile

ensemble precipitation change map with all negative values from

the 80th percentile ensemble precipitation change map.

Country-specific Climate Wizard analyses. All countries

in the world were run through the Climate Wizard custom analysis

to calculate historic linear trends in annual temperature and

precipitation as well as monthly temperature trends, during 1951–

2002. The average latitude of each country was calculated using

GIS analysis. Graphs of country latitude versus proportion of the

country with significant temperature increases .0.4uC/decade

and significant precipitation changes were created using the

statistical program R. For each month, the mean latitude of

greatest area of temperature change .0.4uC/decade was

identified by calculating average latitude of countries weighted

by the area of significant temperature change .0.4uC/decade

within each country. The latitude of greatest area of temperature

change was plotted against month of the year and a nonlinear

regression sine function was fitted to the data using the R statistical

program contributed package nlme [52].

Similarly, all countries in the world were analyzed for future

temperature and precipitation departures during 2070–2099 as

compared to a baseline average of 1961–1990 for all 16 GCMs.

An ensemble analyses was calculated that identified the median

amount of change projected by the 16 models for each country.

The latitude of each country was then plotted against the median

projected change for both temperature and precipitation using the

R statistical program.

Computer Programming Notes and Web User Interface
The Climate Wizard tool is written as a combination of Python

programming scripts (http://www.python.org), and R program-

ming language scripts (http://www.r-project.org/). These scripts

are linked together and served as a web service using ArcGIS

Server (http://www.esri.com). The client to this web service is

written in HTML/ASP.NET/JavaScript (http://www.w3.org/;

http://www.asp.net/; http://en.wikipedia.org/wiki/JavaScript)

web programming. The climate data are stored in the netCDF

file format located on the remote computer server. This remote

server is running the ArcGIS web-service linked to the HTML/

ASP.NET/JavaScript, allowing users of this tool to access and

analyze the data without having any program (except a web

browser) or any climate data on their local machine. When a user

uses the custom web page to requests an analysis, the grid cells to

be analyzed are selected by an ArcGIS geoprocessesing analysis on

the server, then these grid cells and the parameters for the climate-

change analysis (e.g. climate variables, time period, time domain,

type of analysis, etc.) are sent to R, where the analysis are run and

graphics are created. Finally, a ‘‘results web page’’ is created using

Python to generate HTML and JavaScript, which is customized to

the analysis that was run. Once the analysis is complete (which

may take minutes to hours depending on the complexity of the

analysis), the user is e-mailed with a link to the results web page.

From this results web page, the images of the maps and graphs, as

well as the underlying GIS data sets can be downloaded by the

user.
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Supporting Information

Figure S1 Climate Wizard interactive results web page.

Found at: doi:10.1371/journal.pone.0008320.s001 (3.65 MB TIF)

Figure S2 Temperature and precipitation change by country

during 1951–2002 (same as Figure 4, except countries with .20%

area changing are labeled).

Found at: doi:10.1371/journal.pone.0008320.s002 (6.00 MB TIF)

Figure S3 Seasonal temperature trends during 1951–2002. Both

the magnitude of the trends (left) and p-value significance (right) of

the trends are mapped out, and the area of significant change in

each of the magnitude and p-value significance categories are

provided at the bottom. The total height (positive plus negative) of

the graph of trend magnitude is the area of significant (p,0.05)

change, and the colors represent ranges of magnitude of change as

represented in the maps above the graphs.

Found at: doi:10.1371/journal.pone.0008320.s003 (2.07 MB TIF)

Figure S4 Seasonal precipitation trends during 1951–2002.

Both the magnitude of the trends (left) and p-value significance

(right) of the trends are mapped out, and the area of significant

change in each of the magnitude and p-value significance

categories are provided at the bottom. Terrestrial areas in white

did not have sufficient station coverage for the trend analysis. The

total height (positive plus negative) of the graph of trend

magnitude is the area of significant (p,0.05) change, and the

colors represent ranges of magnitude of change as represented in

the maps above the graphs.

Found at: doi:10.1371/journal.pone.0008320.s004 (2.10 MB TIF)

Figure S5 Model agreement in precipitation change. Map

showing areas where at least 80% (13 of the 16 models) of the

GCMs agree precipitation will either increase (blue areas) or

decrease (brown areas). Areas in grey have less than 80%

agreement in the direction of change in precipitation. Note that

this map was created by overlaying all positive values from the

20th percentile precipitation map (from Figure 12) and all negative

values from the 80th percentile precipitation map (from Figure 12).

Found at: doi:10.1371/journal.pone.0008320.s005 (7.67 MB TIF)
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